

TD1470 Single and Double Arm Bridge Calibration Device

1. Summary

TD1470 is an instrument that can accurately simulate a wide range of DC standard resistance. It can realize the verification and calibration of single-arm bridges, double-arm bridges, high-precision DC resistance meters and digital micro-ohmmeters.

2. Features

- DC current measurement range: 1 mA ~ 11 A
- Resistance simulation range: 100 $\mu\Omega$ ~ 11 M Ω
- Best measurement uncertainty of resistance: 100 ppm
- Two-wire and four-wire resistance modes
- RS232 interface
- Large-size LCD touch screen

3. Application

- Calibrate single-arm bridge with class 0.05 and below
- Calibrate DC resistance meters of class 0.05 and below
- Calibrate temperature measurement bridges of class 0.05 and below

Tunkia Co., Ltd.

4. Characteristics

Compared with physical resistor boxes, analog resistors have the following advantages:
 ①The resistance value is continuously adjustable, with better adjustment fineness and better sensitivity;

②There is no influence from switching error, residual resistance error, contact resistance error, etc., and the measurement data is accurate and reliable;

③When the physical resistor is overloaded, it will cause the resistance to change value, and in severe cases, it may even cause the resistor to be damaged. TD1470 has current overload capability and impact resistance, and has been completely tested for electrostatic protection and electromagnetic compatibility. It has good protection performance and high reliability.

• TD1470 has a self-calibration function to ensure long-term accuracy and stability of the value.

- Large-size LCD screen: full color, high screen brightness, clear picture quality, and supports touch operation.
- Digit buttons: A variety of input methods such as fixed-point output, knob output, and step adjustment can be realized, and the operation is convenient and fast.
- Front panel wiring: It is convenient for users to replace the current and voltage test wires when checking the meter.

☆ Multiple output methods						
ESC Image: Comparison of the second sec			20	0.5 n	nΩ	
4 5 6 m 1 2 3 κ Ω	7	8	9	+	μ	С
	4	5	6	—	m	
	1	2	3	*	k	Ω
+10% +10 TRACK ZERO	0	•	=	/	М	
					✓ ок	₩ ВАСК
Keypad Touch Screen "Value Output" Interface • The instrument has a "fixed point output" mode, through the digital button of the control						
panel or click the touch screen, directly set the required output value, the instrument will						
automatically switch to the best range output.						

☆ Multiple output methods	s
ESC C 7 8 4 5 1 2 0 +/- K C 0 +/- KEF +ENTER 10% +10 10% +10 10% +10 10% +10 10% 10%	100% 80% 60% 40% 20% 90% 70% 50% 30% 10% Percentage Check Point" on the Touch Screen Image Check Point" on the Touch Screen
 DCR 10.000 mΩ Full-scale output When calibrating a resistant according to the proportion The user can easily select "Percentage Output Button Point" on the touch screen 	 9.000 mΩ BCR 8.000 mΩ BCR 8.000 mΩ BCR 8.000 mΩ BO% of Range output B0% of Range output B0% of Range output B0% of Range output Constant of Ra
ESC 7 8 9 4 5 6 1 2 3 0 · +/- REF + ENTER Number Knob	OPR/STBY Image: Comparison of the state of

• The operating area is equipped with a "Rotary Encoder" that increases or decreases the output by rotating it clockwise or counterclockwise.

5. Specifications

5.1 Low Value Resistor Simulation

	Fineness	Measurement U			
Range	Adjustment	24h (23 ± 1)°C	90days (23 ± 5)°C	1year (23 ± 5)°C	Input Current ^[2]
1 mΩ	10 nΩ	50 + 0.5	75 + 0.5	100 + 0.5	1 A~10 A
10 mΩ	100 nΩ	50 + 1	75 + 1	100 + 1	0.5 A~5 A
100 mΩ	1 μΩ	50 + 3	75 + 3	100 + 3	0.3 A~5 A
1 Ω	10 μΩ	50 + 15	75 + 15	100 + 15	0.05 A~5 A
10 Ω	100 μΩ	50 + 150	75 + 150	100 + 150	10 mA~300 mA
100 Ω	1 mΩ	50 + 1500	75 + 1500	100 + 1500	1 mA~30 mA

Note [1]: RD is the reading value, the same below;;

[2] When the current and resistance exceed the range, the resistance value will bring additional error

- Resistance Simulation Range: (10%~110%)*RG, 6-digit display
- Wiring Method: 4-wire
- Current Input Range: 1 mA ~ 11 A
- Range Switching: manual/automatic shifting

5.2 Medium and High Value Resistance Simulation

	Financea	Measurement			
Range	Adjustment	24h (23±1)°C	90days (23±5)°C	1year (23±5)°C	Input Current
100 Ω	1 mΩ	50 + 0.002	75 + 0.002	100 + 0.002	1 mA~80 mA
1 kΩ	10 mΩ	45 + 0.01	50 + 0.01	90 + 0.01	1 mA~12 mA
10 kΩ	100 mΩ	45 + 0.1	50 + 0.1	90 + 0.1	100 µA~2 mA
100 kΩ	1 Ω	45 + 1.0	50 + 1.0	90 + 1.0	10 µA~0.2 mA
1 MΩ	10 Ω	50 + 10	75 + 10	100 + 10	1 µA~20 µA
10 MΩ	100 Ω	100 + 100	150 + 100	200 + 100	250 nA~2 μA

• Resistance Simulation Range: (10%~110%)*RG, 6-digit display

- Wiring Method: 4-wires /2-wires
- Current Input Range: 250 nA ~ 80 mA
- Range Switching: manual/automatic shifting

6. General Specifications

Power Supply	AC (220 ± 22) V, (50 ± 2) Hz;		
	Not less than 1 hour, and the warm-up time again after shutting down in		
warm-up nme	the middle should not be less than 2 times the shutdown time;		
Maximum Power	150.)//		
Consumption	150 VA		
Temperature	Working temperature: 18 °C ~ 28 °C;		
Performance	Storage temperature: -10 °C ~ 50 °C;		
Humidity	Working humidity: (20 % ~ 80%) R·H, non-condensing;		
Performance Storage humidity: < 85% R·H, no condensation;			
Altitude	< 3000 m		
Weight	Approx 10 kg		
Communication			
Interface			
Dimension	400 mm (W) × 265 mm (D) × 190 mm (H) (without feet and handles)		

7. Accessories List

NO.	Picture	Name	Specification	Quantity	Remark
1		High Value Resistance Test Leads	6 in 1, 0.8m-Φ4 gun stock -Φ4 gun stock	1	Standard Accessory
2		Universal Serial Cable	1.8m / USB to RS232(DB9 socket)	1	Standard Accessory
3		Power Cable	AC 220V、10A	1	Standard Accessory
4	9	Packaging Box	Aluminum Alloy Box	1	Standard Accessory

NO.	Picture	Name	Specification	Quantity	Remark
1	Persker and	Calibration Software	Card USB	1	Optional Accessory
2		Packaging Box	Pelican	1	Optional Accessory

Note: The above optional accessory need to be purchased separately and specified in the order contract.

8. Relevant Product

TH0360 High Precision DC Resistance Meter Calibrator	 DC current measurement range: 20 mA ~ 22 A Best current measurement uncertainty: 40 ppm Resistance simulation range: 0 Ω ~ 1.1 GΩ Best measurement uncertainty of resistance: 20 ppm
TH0350 DC Bridges Calibrator	 DC current measurement range: 1 mA ~ 11 A Resistance simulation range: 100 μΩ ~ 11 MΩ Best measurement uncertainty of resistance: 50 ppm