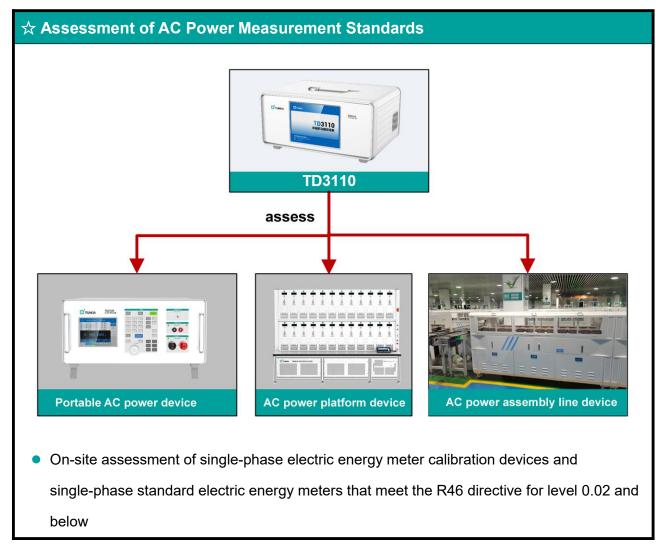


TD3110 Single-Phase Multi-Function Standard Meter

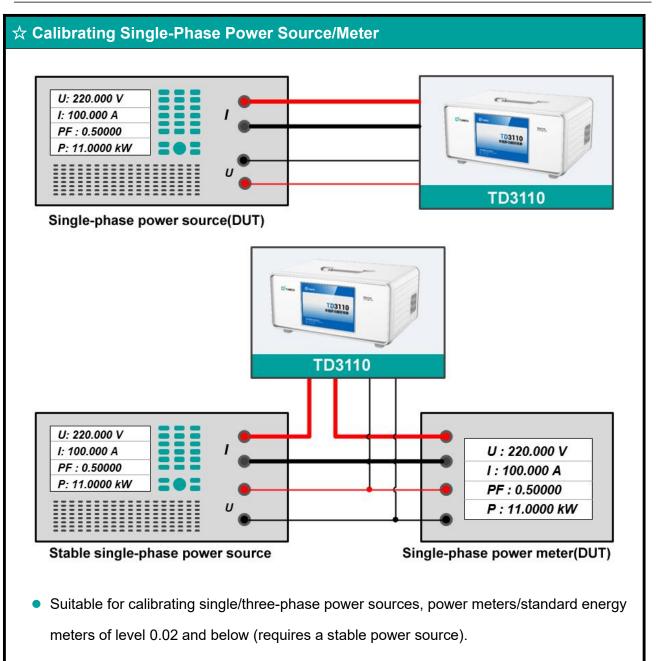
1. Summary

TD3110 is a high-precision single-phase standard instrument that can simultaneously measure multiple electrical parameters in the circuit such as: voltage, current, frequency, phase, harmonics, active power / energy, reactive power / energy, apparent power, power factors etc. This instrument has a wide range of applications. It can be used as a standard meter for single-phase energy meter calibration devices that meet the new national standards and R46. It is also suitable for calibrating single-phase power standard sources/meters.

2. Features

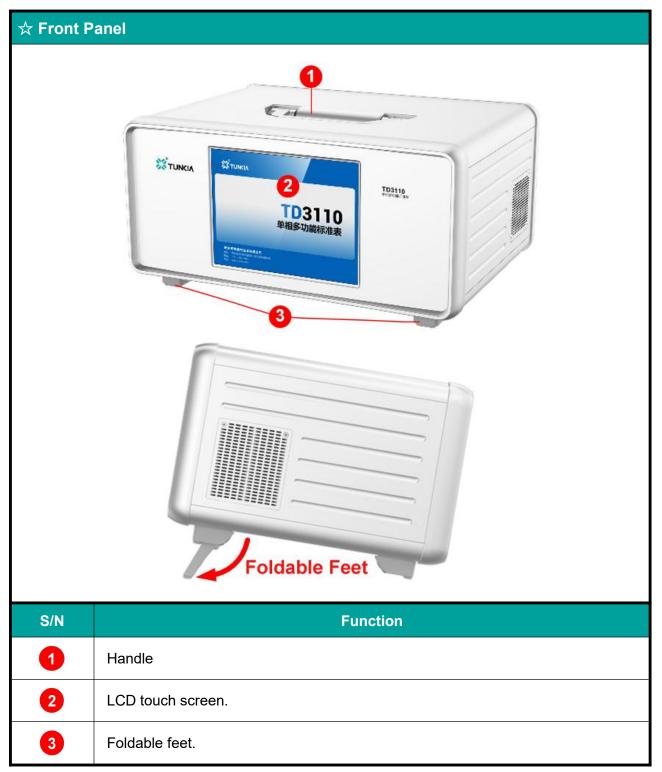

- Power / energy measurement uncertainty: class 0.01.
- Voltage measurement range: 6 V ~ 528 V (a wider range can be customized).
- Current measurement range: 1 mA~120 A.
- Fundamental frequency: 45 Hz ~ 65 Hz (400Hz optional).
- The typical phase measurement uncertainty reaches 0.003°.
- Voltage and current support fully automatic range shifting.
- Both voltage and current support harmonic measurement from 2nd to 63rd order.
- It has the function of comprehensive statistical analysis of the measured power.
- Supports phasor diagram, spectrum diagram, trend diagram and other graphic displays.
- With standard power pulse input/output function.

Tunkia Co., Ltd. 领略前沿科技·创新电磁测量


- Communication interfaces: USB, RS232, LAN.
- Large-size LCD touch screen.

3. Application

2



3

4. Instrument Appearance

🕁 Rear Panel

S/N	Function					
1	Current terminal: A wide range of current measurement from 1 mA to 120 A can be achieved with one connection.					
2	Communication interfaces: including RS232, USB, and LAN, making it easy for users to set up a fully automatic test system.					
3	Make sure that the device is reliably grounded before testing.					
4	Power interface: AC 220V power input interface with switch and fuse.					
5	Voltage terminal block: A wide range of voltage measurement from 6 V to 528 V can be achieved with one connection.					
6	Pulse input terminal: From left to right are photoelectric pulse, electric energy pulse, and synchronization signal.					
7	Pulse output terminal: From left to right are the electric energy pulse F_L/F_H and synchronization signal.					

5. Features

☆ Wide Current Measurement Range

Each phase is equipped with a pair of quick-connect terminals and wires. Through direct plugging, a wide range of AC current measurement from 1 mA to 120 A can be achieved, simplifying wiring operations.

Fully automatic range switching.

The minimum measurement limit is 1mA, which can assess the accuracy and stability of the power / electric energy of the electrical energy device and its standard meter at the minimum starting current.

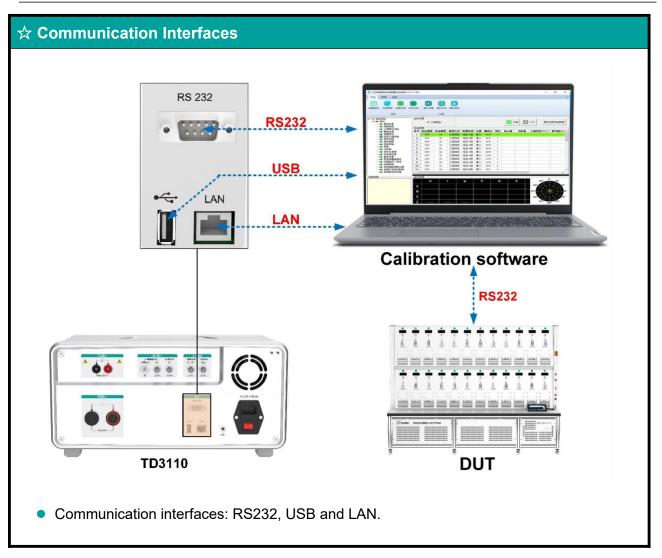
☆ High Reliability

- There is complete electrical isolation between voltage and current measurement circuits;
- Switching the machine on and off under extreme conditions (500 V, 100 A) will not damage the instrument, but also ensures accurate values.

$\cancel{2}$ Suitable for On-site Testing

Light weight (approx 9kg) with trolley type instrument case facilitates easy transportation and on-site testing.

☆ Compr	ehensive Analysis of AC Power					
60 V						
60 V/ 1 0.000 2 0.000 3 0.000 7 0.000 1 0.0	Auto S mA Auto L L0.8 O 000000% TH0#*0.00000% Imm Imm Imm Imm 200 V 000.0000* Imm Imm Imm Imm Imm 200 V 000.0000* Imm Imm<					
S/N	Function					
1	Oscilloscope function: Display the waveform of the measured power in real time.					
2	 Accurately measure the phase between each phase voltage and current, and display it intuitively in the form of a phasor diagram. Calculate two types of harmonic distortion: THD/T (harmonic relative to full wave) and THD/F (harmonic relative to fundamental). 					
4	The amplitude (RMS), content (%), and phase of the 2nd to 63rd harmonics of each phase voltage or current can be analyzed in real time.					
5	The spectrum of each harmonic is visually displayed in the form of a histogram (the fundamental wave is 100%).					



\Rightarrow Data Statistical Analysis

						and the second second							
60 \		5 mA Auto		1.0 s		¢	6	0 V Auto	5 mA Auto		1.0 s		0
u v 00.039		00:33 P-P 00.000 27	Avg 00.039 04	S.dev 0.000 113	S.dev/Avg[ppm] 2 894.5	^{UIP} 功率 谐波			Unt				¹⁰⁰⁰ 功率 谐波
1 mk 0.000 i		0.000 000	0.000 000	0.000 000	0.0	分析							分析
P mw 000.00					0.0	运算电能							运算电能
0 tvar 000.00 s tvA 000.00					0.0 0.0				10 V P-P 00.000	127 V Tin	ne 00:00:33		
趋势图 直7	5图 稳定性	功率稳定性				▶开始	Avg 00.039 04 趋势图				34	<u>(</u>)	▶开始
60 V	/ Auto 5	i mA Auto	t	— 1.0 s	0	¢	1	0 V Auto	5 mA Auto	te	1.0 s	0	0
1055				U		功率	Max	τίπε: λ 1.000 00	00:00:33		P(M) P(M) 000000	m	功率
83% 60%		3				谐波 分析	Min	1.000 00			000000		谐波 分析
-489						运算	P-P	0.000 00			000000		运算
20%		J.	. .			电能	Avg S.dev	0.000 00			000000		电能
Max 00.039 17 V Avg 00.039 04 V	0 Min 00.038 90 V S.dev 0.000 113 V	P-P 00.000	27 V Time N	00:00:33 34			JJG 597 [ppm]	00000	D		000000		
趋势图 直方	5 8 稳定性 3	功率稳定性				▶开始	趋势图	直方图 稳定性	功率稳定性				▶开始
S/N							Fund	ction					
1	Data powe		ical a	nalysi	s: Ca	lculate	e Max, I	Vin, P-F	P, Avg, S	S.dev,	etc. of	f the r	measure
2	Powe	Power stability test: The curve of power change with time is drawn in real time.											
3		Normal distribution histogram: Displays the distribution of the statistical power											
	durin	g the t	est pe	eriod.									
4			-				wer sta	bility of	the test	ed ele	ectrical	l ener	gy devi
	can b	e auto	omatic	allv c	alcula	ated							

9

6. Specification

6.1 Single-phase Voltage Measurement

Range	Resolution	Measurement Uncertainty (k = 2) (ppm*RD + ppm*RG) ^[1]	Temperature Coefficient @ (15~30)°C (ppm*RD+ppm*RG) /°C		
60 V	10 µV	30 + 20	0.25 + 0.25		
120 V	0.1mV	30 + 20	0.25 + 0.25		
240 V	0.1mV	30 + 20	0.25 + 0.25		
480 V	0.1mV	30 + 20	0.25 + 0.25		
Note [1]: RD is the reading value, RG is the range value, the same below.					

 Measuring range: 6 V~528 V (wider range can be customized), 7-digit display, manual/automatic range shifting

6.2 Single-phase Current Measurement

Range	Resolution	Frequ	ent Uncertainty uencies(Hz)(H pm*RD + ppm*R	Temperature Coefficient @ (15~30)°C (ppm*RD+ppm*RG) /°C		
		45 ≤ F ≤ 65	65 < F ≤ 200	200 < F ≤ 400	Class 0.01	
10 mA	10 nA	60 + 40	120 + 80	240 + 160	3 + 3	
20 mA	10 nA	60 + 40	120 + 80	240 + 160	0.75 + 0.75	
50 mA	10 nA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
100 mA	0.1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
200 mA	0.1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
500 mA	0.1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
1 A	1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
2 A	1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
5 A	1 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
10 A	10 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
20 A	10 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
50 A	10 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	
100 A	100 µA	30 + 20	60 + 40	120 + 80	0.25 + 0.25	

• Measuring range: 1 mA~120 A, 7-digit display, manual/automatic range shifting

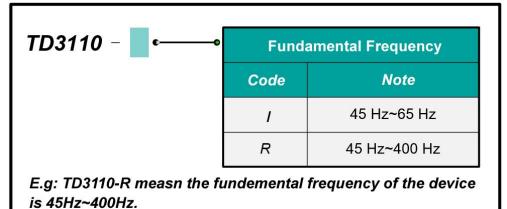
	Measuremen	t Туре	TD3110	TD3110-R	
Frequency	Meas	uring Range	45 Hz~65 Hz	45 Hz~400 Hz	
	Minimu	um Resolution	0.000 01 Hz 0.000 01 Hz		
	Measureme	nt Uncertainty (k=2)	0.005%*RD 0.005%*RD		
	Meas	uring Range	0~360°(I≥50mA)	0~360°(I≥50mA)	
	Minimu	um Resolution	0.000 1°	0.000 1°	
Phase	Measurement Uncertainty	45 Hz ≤ F ≤ 65 Hz	0.003°	0.003°	
		65 Hz < F ≤ 200 Hz		0.01°	
	(k=2)	200 Hz < F ≤ 400 Hz		0.02°	

6.3 Frequency / Phase Measurement

6.4 AC Power / Energy Measurement

Voltage Range	Current Range	Power	Measurement Uncertainty at Different Frequencies(Hz)(k = 2)			
		Factor	45 ≤ F ≤ 65	65 < F ≤ 200	200 < F ≤ 400	
	50 mA ≤ I ≤120 A	0.5L~1~0.5C	0.01%*RD	0.02%*RD	0.04%*RD	
	10 m 4 < 1 < 50 m 4	1	0.01%*RD	0.03%*RD	200 < F ≤ 400	
30 V ≤ U ≤ 480 V	10 mA ≤ I < 50 mA	0.5L~1~0.5C	0.02%*RD	0.03% RD		
50 V ≤ O ≤ 400 V	5 mA ≤ I < 10 mA	1	0.02%*RD	_		
	5 IIIA 2 I < 10 IIIA	0.5L~1~0.5C	0.04%*RD			
	1 mA ≤ I < 5 mA	1	0.02%*RD×5mA/I			

- Power / energy measurement range: combination of AC voltage range and AC current range
- Power factor measurement range: -1.000 000...0.000 000...1.000 000
- Standard electric energy pulse output: high frequency full scale value corresponds to 60 kHz, low frequency full scale value corresponds to 6 Hz
- Standard power pulse input: frequency ≤ 200 kHz, voltage: 0...3.3 V...24 V


7. General Specification

Power Supply	AC (220 ± 22) V, (50 ± 2) Hz						
Maximum Power Consumption	60 VA						
Warm-up Time	30mins						
Temperature	Working temperature: 5°C~45°C;						
Performance	Storage temperature: -10°C~55°C						
Humidity	Working humidity: < 80% @ 30°C, < 70% @ 40°C, < 40% @ 50°C						
Performance	Storage humidity: (20%~80%) R·H, non-condensing						
Altitude	< 3000 m						
Weight	Approx 9 kg						
Communication Interface	RS232、USB、LAN						
	400 mm(W) × 345 mm(D) × 205 mm(H)						
Size	400 mm						
	205 mm						

8. Ordering Information

 Tunkia Co., Ltd.

 领略前沿科技·创新电磁测量